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ABSTRACT

The statistical properties of magnetic discontinuities in the solar wind are investigated by measuring fluctuations
in the magnetic field direction, given by the rotation Δθ that the magnetic field vector undergoes during time
interval Δt . We show that the probability density function, P (Δθ ), can be described by a simple model in which
the magnetic field vector purely rotates with a relative increment ΔB/B that is lognormally distributed. We find
that the probability density function of increments, P (ΔB/B), has a remarkable scaling property: the normalized
variable x = (ΔB/B) · (Δt/Δt0)−α has a universal lognormal distribution for all time intervals Δt . We then compare
measurements from the solar wind with those from direct numerical simulations of magnetohydrodynamic (MHD)
turbulence. We find good agreement for P (Δθ ) obtained in the two cases when the magnetic guide field to fluctuations
ratio B0/brms is chosen accordingly. However, the scale invariance of P (ΔB/B) is broken in the MHD simulations
with relatively limited inertial interval, which causes P (Δθ ) to scale with measurement interval differently than in
the solar wind.
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1. INTRODUCTION

Since the beginning of the space age, the solar wind has
been used as a natural laboratory for studying plasma turbu-
lence. It is now widely accepted that the solar wind contains
coherent magnetic structures (Veltri 1999; Sorriso-Valvo et al.
1999; Bruno et al. 2007a; Li et al. 2011; Miao et al. 2011).
Observations have shown that magnetically dominated struc-
tures are ubiquitous in the heliosphere and are advected by both
the fast and slow wind (Bruno et al. 2007b). There have been
many approaches to studying these structures (Li 2008; Greco
et al. 2010; Servidio et al. 2011), hinging on the fact that they are
typically associated with rapid spatial variation or reversal of the
local magnetic field. In other words, structures are associated
with discontinuities in the magnetic field.

Although it is accepted that magnetic structures exist in the
solar wind, there remains a debate regarding the origin and na-
ture of these structures. Two primary theories have been put
forth. One model envisions that the structures are flux tubes
that originate in the solar corona and are passively advected by
the solar wind. A second model contends that magnetohydro-
dynamic (MHD) turbulence dynamically produces intermittent
structures as the solar wind flows outward. Although these two
models are not mutually exclusive, it is important to determine
to what degree each mechanism contributes.

A critical step toward answering this question was taken
by Borovsky (2008). He noted that magnetic discontinuities
are implied by large fluctuations in the magnetic field di-
rection across short measurement scales (Bruno et al. 2001,
2004), which provides a convenient and statistically robust
way to quantify magnetic discontinuities. Borovsky therefore
considered fluctuations in the magnetic field direction, given
by rotations Δθ = cos−1 (B1 · B2/|B1||B2|), where B1 and
B2 are the magnetic field vectors for two measurements sep-
arated by time Δt . Using measurements from the Advanced
Composition Explorer spacecraft, he studied the statistical

properties of rotations by constructing a probability density
function (pdf), P (Δθ ). Borovsky discerned two populations in
the pdf. The first population consists of strong discontinuities
at 30◦ < Δθ < 170◦ with an exponentially decaying pdf pro-
portional to exp(−Δθ/24.◦4). The second population consists
of weak fluctuations at 5◦ < Δθ < 30◦ which can be fit by
exp(−Δθ/9.◦4). Subsequent analysis by Miao et al. (2011) us-
ing data from the Ulysses spacecraft was in broad agreement
with Borovsky’s result. The interpretation put forth by these
authors was that the first population represents strong disconti-
nuities across the walls of coronal flux tubes, while the second
population represents turbulent fluctuations.

However, it is known that MHD turbulence can spontaneously
produce strong magnetic discontinuities (Goldstein et al. 1995;
Boldyrev 2006; Greco et al. 2008). These discontinuities corre-
spond to intermittent structures, which primarily take the form
of current sheets for inertial range turbulence. It has also been
demonstrated that many statistical properties of the solar wind
fluctuations are consistent with MHD turbulence. These include,
for instance, the energy spectra of magnetic and velocity field
fluctuations (Podesta et al. 2007; Boldyrev et al. 2011), the
anisotropic scaling of structure functions (Chen et al. 2011),
and the waiting-time analysis of field increments (Greco et al.
2009, 2010). The MHD description is known to break down at
small scales, but the solar wind fluctuations are then thought
to be consistent with kinetic models of turbulence (Medvedev
et al. 1997; Howes et al. 2011). We have also shown in a separate
paper that MHD turbulence is able to reproduce the observed
exponential tail of P (Δθ ) for reasonable strengths of the mag-
netic guide field (Zhdankin et al. 2012). These facts support the
picture where the population of discontinuities is governed by
MHD turbulence, which may be complementary or alternative
to interpretations by Borovsky (2008) and Miao et al. (2011).

In this Letter, we investigate the statistical properties of
magnetic discontinuities in the solar wind. We show that P (Δθ )
is a consequence of the magnetic field vector having a strong
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Figure 1. pdf of rotations in the magnetic field direction, P (Δθ ), for the solar
wind with measurement intervals of Δt ∈ {1, 16, 256, 4096} · 3 s (measured
by the WIND spacecraft). While part of the tail (Δθ > 60◦) may be fit by an
exponential function (straight line in the plot), the bulk of the pdf (Δθ < 60◦)
varies drastically with Δt .

(A color version of this figure is available in the online journal.)

tendency to undergo pure rotations with lognormally distributed
relative increments ΔB/B. This picture is attractive because the
magnetic field in the solar wind is known to exhibit lognormal
statistics to a good approximation (Burlaga 2001). Furthermore,
we find that the pdf’s of relative increments, P (ΔB/B), for
different separations Δt can be rescaled to match, that is, the
distribution of (ΔB/B) · (Δt/Δt0)−α with appropriately chosen
Δt0 and α is a universal lognormal distribution. This strong
scaling property implies the so-called monofractality or the
absence of intermittency in the fluctuations of ΔB/B.

We then directly compare the statistical properties of rota-
tions in the solar wind with numerical simulations of MHD
turbulence. We find a good agreement in P (Δθ ) for the two
cases for reasonable ratios of simulation guide field to fluctua-
tions. We also find that the scaling of the distribution function
of ΔB/B is not well preserved in the simulations and that the
magnetic field vector does not have a strong tendency to un-
dergo pure rotations. These differences may be the consequence
of a much smaller inertial range in numerical simulations than
in the solar wind. This causes the pdf’s in the two cases to scale
differently with measurement interval, and hence separations in
the two cases cannot be directly compared.

2. ANALYSIS OF SOLAR WIND

First, we consider the properties of magnetic discontinuities in
the solar wind. We analyze a time-series of spacecraft magnetic
field measurements, B(t), taken by the WIND spacecraft over
the years 2005–2010. Each vector is averaged over a time of
Δtmin = 3 s, but the results are independent of the averaging
scale as long as Δt > Δtmin. The analysis does not exclude
events such as coronal mass ejections and corotating interaction
regions. It also does not differentiate between slow and fast
winds, which are known to have different typical properties and
physical processes. A similar statistical study applied separately
to the regions of fast or slow wind may in principle produce
different results.

Figure 2. Scatter plot of 2 sin (Δθ/2) vs. ΔB/B, which are equal if the
magnetic field vector undergoes a pure rotation between measurements. Also
shown, in the inset, is the pdf of the normalized difference χ = |ΔB/B −
2 sin (Δθ/2)|/(ΔB/B), which is strongly peaked at zero. These plots show that
the magnetic field in the solar wind tends to rotate between the measurements
rather than change in strength.

(A color version of this figure is available in the online journal.)

To quantify magnetic discontinuities, we consider fluctua-
tions in the magnetic field direction, given by the rotation Δθ .
The rotation Δθ between two magnetic field vectors, B1 and B2,
separated by time interval Δt is

Δθ = cos−1 (b1 · b2), (1)

where b = B/B is a unit vector along the magnetic field. A
large rotation implies a magnetic discontinuity, while a small
rotation represents weak fluctuations. The statistical properties
of rotations then provide a window into understanding the nature
of discontinuities and intermittency. Similar measurements of
magnetic field rotations have been applied by Perri et al. (2009)
to study anisotropy.

In Figure 1, the pdf of rotations, P (Δθ ), is shown for Δt ∈
{1, 16, 256, 4096} · 3 s. The pdf has a strong dependence on Δt .
The tail (Δθ > 60◦) can be approximately fit by an exponential
function, while the bulk of the pdf (Δθ < 60◦) varies drastically.
This reveals that the resolution used to measure fluctuations is an
important parameter. This is reasonable because the correlation
between measurements is increased when Δt is decreased, which
in turn increases the likelihood of small Δθ .

We now show that P (Δθ ) can be described by a simple
model. We define the relative increment in magnetic field as
ΔB/B = |B2−B1|/|B1|. If the magnetic field vector undergoes
a pure rotation between the measurements, that is, does not
change amplitude, then ΔB/B depends only on the rotation
angle Δθ , satisfying

ΔB/B = |b2 − b1| = 2 sin (Δθ/2), (2)

where fluctuations must lie within 0 < ΔB/B < 2 to be
meaningful. We find that the magnetic field vector in the
solar wind indeed strongly satisfies Equation (2), as shown in
Figure 2. Therefore, between two closely spaced measurements
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Figure 3. Quantity x = (ΔB/B) · (Δt/Δt0)−α has the pdf F (x) that is
independent of Δt , where Δt0 ≈ 6.6 × 103 s and α ≈ 0.46. The curves shown
for Δt ∈ {1, 4, 16, 64, 256, 1024} · 3 s are all in remarkable agreement with the
lognormal distribution of μ = 0 and σ = 1, indicating that ΔB/B is scale-
invariant over the given values of x. For small Δt , the agreement also extends
far beyond the values of x shown, almost up to the cutoff at ΔB/B = 2.

(A color version of this figure is available in the online journal.)

(Δt � 104 s), the magnetic field tends to mostly rotate instead
of change in strength, and the fluctuations in the rotation angle
can be studied in terms of the relative increments ΔB/B.

We find that P (ΔB/B) in the solar wind is well fit by a
lognormal distribution for 0 < ΔB/B < 2. The lognormal
distribution is given by

f (x) = 1

xσ
√

2π
exp

(
− 1

2σ 2
(log x − μ)2

)
, (3)

where μ and σ are the location parameter and scale parameter,
respectively. The fit is not surprising since other measurements
of magnetic fields in the solar wind also have approximately
lognormal statistics, e.g., Burlaga (2001). The lognormal fits
to P (ΔB/B) can all be chosen with σ = 1, which implies
that P (ΔB/B) for any Δt can be rescaled into the universal
lognormal function according to the formula

P

(
ΔB

B
; Δt

)
=

(
Δt

Δt0

)−α

F

(
ΔB

B

(
Δt

Δt0

)−α
)

, (4)

where F (x) is the universal lognormal pdf,

F (x) = 1
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√

2π
exp

(
−1

2
log2 x

)
, (5)

and the best fit is given by Δt0 ≈ 6.6 × 103 s and α ≈ 0.46.
This property is illustrated in Figure 3, where the pdf’s of the
rescaled variable x = (ΔB/B) · (Δt/Δt0)−α are in remarkable
agreement for 3 < Δt < 1024 · 3 s. We find that the measured
curves follow the scale-invariant lognormal form almost until
the cutoff that occurs at ΔB/B = 2. For different values of
Δt , such a cutoff corresponds to different values of x. Figure 3
shows the range of x for which all the measured curves follow
the lognormal form F (x).

This scaling property of the pdf implies that the field ΔB/B
has a scale-invariant and nonintermittent (monofractal) distri-
bution. In addition, it demonstrates that there exists a certain

Figure 4. Comparison of the pdf for rotations measured in the solar wind
(in blue) and the pdf derived from lognormal P (ΔB/B) with the assumption
that vectors undergo pure rotations (in red). The separations shown are
Δt ∈ {1, 16, 256, 4096} · 3 s.

(A color version of this figure is available in the online journal.)

scale Δt0, which can probably be identified with the outer scale
of turbulence.

We therefore model the rotations Δθ as follows. Assume
that P (ΔB/B) is lognormal and scales with Δt as described
by Equation (4), and also assume that the vector undergoes
a pure rotation so Equation (2) is applicable. Then P (Δθ )
is obtained. This model gives excellent agreement with the
pdf of rotations in the solar wind, as shown in Figure 4 for
Δt ∈ {1, 16, 256, 4096} · 3 s. It is worth noting that the bulk
of P (Δθ ) is also approximately lognormal, in agreement with
previous conclusions by Vasquez et al. (2007) and Bruno et al.
(2004). We have, however, shown that modeling ΔB/B, rather
than Δθ , from a lognormal distribution better fits the data. The
weak fluctuations and strong discontinuities characterized by
Δθ may then be regarded as a single population described by
lognormal fluctuations in the magnetic field and a tendency of
the magnetic field vector to rotate.

3. ANALYSIS OF MHD TURBULENCE

We now discuss the statistical properties of rotations in MHD
turbulence and compare them to the solar wind case. We use
data from direct numerical simulations of three-dimensional in-
compressible strong MHD turbulence. The MHD equations are

∂tv + (v · ∇)v = −∇p + (∇ × B) × B + ν∇2v + f1,

∂t B = ∇ × (v × B) + η∇2 B + f2,

∇ · v = 0,

∇ · B = 0, (6)

where v(x, t) is the plasma velocity, B(x, t) = B0 + b is the
magnetic field that has both uniform (B0) and fluctuating (b)
components, p is the pressure, and f(x, t) is the external forc-
ing. We take the viscosity ν and resistivity η to be equal.

The equations are solved on a triply periodic domain using
standard pseudospectral methods. The time advancement of
the diffusive terms is carried out exactly using the integrating
factor method, while the remaining terms are treated using a
third-order Runge–Kutta scheme. For a detailed description of
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the numerical method, see, e.g., Cattaneo et al. (2003). The
turbulence is driven at the largest scales by applying random
forces f1 and f2 in Fourier space at wavenumbers 2π/L �
k⊥ � 2(2π/L), k‖ = 2π/L. The correlation between the forces
is chosen as to mimic the driving by independent counter-
propagating shear-Alfvén modes (see, e.g., Perez & Boldyrev
2010; Boldyrev et al. 2011); however, turbulence may also be
driven by other choices of large-scale forcing; this does not affect
the inertial interval (see Mason et al. 2008). The forces have no
component along z and are solenoidal in the xy-plane. All of the
Fourier coefficients outside the above range of wavenumbers are
zero and inside that range are Gaussian random numbers that
are refreshed on average every 0.1L/(2πvrms) time units (that is,
force is updated approximately 10 times per large-scale turnover
time) with amplitudes chosen so that vrms ∼ 1. We conducted
a number of MHD simulations with different ratios of B0/brms.
The analysis is performed on several statistically independent
snapshots corresponding to a steady state, with a resolution of
10243 and Reynolds number Re ≈ 3000.

For a fixed time snapshot, we measure the rotation of the
magnetic field between points separated by spatial distance
Δx. Therefore B1 and B2 in Equation (1) are taken from a
magnetic field profile B(x, y, z). We consider separations taken
in the plane perpendicular to the guide field, although the results
are similar for separations along the guide field. Using spatial
separations in MHD instead of time separations is a significant
difference from the solar wind analysis. However, we expect
temporal measurements in the solar wind to be equivalent to
spatial ones because of the Taylor hypothesis, Δt ≈ Δx/VSW,
where VSW is the (approximately constant) solar wind velocity.
Therefore, we should observe Δt ∝ Δx if the solar wind
observations are consistent with MHD turbulence.

We find that P (Δθ ) has a strong dependence on the ratio
of magnetic guide field to root-mean-square (rms) fluctuations,
B0/brms. Specifically, the characteristic angle for the exponential
tail decreases with increasing B0/brms, i.e., the slope on the
loglinear axis becomes steeper (Zhdankin et al. 2012). We find
that choosing B0/brms ≈ 0.32 gives a good agreement with the
solar wind measurements considered here, which is reasonable
since B0 ∼ brms in the solar wind. Therefore, we use MHD
data with B0/brms ≈ 0.32 in the remaining analysis. We also
find that P (Δθ ) does not change significantly in simulations
of lower Reynolds number (Re ≈ 2200) and lower resolution
(5123), indicating that even higher Reynolds numbers may need
to be achieved for better agreement with the observational data.

A direct comparison of P (Δθ ) for MHD turbulence and for
the solar wind is shown in Figure 5 for several measurement
intervals. To get the best agreement between the two cases, we
have chosen intervals of Δx/L ∈ {4, 16, 64}/1024 for MHD
and Δt ∈ {5, 64, 830} · 9 s for the solar wind. This requires
approximately that Δt ∝ Δx1.85 in order to get the solar wind
pdf’s to match the MHD pdf’s, which seemingly violates the
Taylor hypothesis. We also find that the scale invariance of
P (ΔB/B) as described by Equation (4) is broken in our MHD
simulations: although P (ΔB/B) is well fit by a lognormal
distribution for all Δt , the fits require different values of σ and
therefore cannot be rescaled into one another. We also find that
the magnetic fluctuations in the simulations are not dominated
by rotations.

These differences are likely caused by a much shorter inertial
range (less than one decade) that spoils the scale invariance
of P (ΔB/B) as described by Equation (4), which in turn
modifies the scaling of P (Δθ ). One, in principle, should not

Figure 5. Comparison of the pdf’s of Δθ for MHD turbulence (in red)
with Δx/L ∈ {4, 16, 64}/1024 and for the solar wind (in blue) with Δt ∈
{5, 64, 830} · 9 s, consistent with the relation Δt ∼ (Δx)1.85. There is generally
good agreement in the pdf’s for both cases.

(A color version of this figure is available in the online journal.)

expect to see such a strong scaling property of ΔB/B in a
rather modest simulation. A related difference is that the MHD
measurements are near the dissipation range (Δx � 16), while
the solar wind measurements are well within the inertial range.
Therefore the simulations must have a larger separation of scales
to more accurately capture the physics that describes the scaling.
Nevertheless, we see that for any fixed separation, MHD is able
to produce similar pdf’s as in the solar wind, which shows that
discontinuities in the solar wind are accurately reproduced by
simulations.

4. CONCLUSIONS

We found that the pdf of rotations in the magnetic field of the
solar wind has a shape that is in good qualitative agreement with
strong MHD turbulence (Figure 5). The numerical simulations
are consistent with the observations if the magnetic guide
field to rms fluctuations ratio is B0/brms ≈ 0.32, which is
reasonable for the solar wind. The approximately exponential
tail of P (Δθ ) is consistent with solar wind analysis done by
Borovsky (2008) and Miao et al. (2011), but our interpretation of
the result is different. Our results suggest that the pdf is closely
associated with lognormal fluctuations of the magnetic field.
Since such fluctuations are present in MHD simulations, this
suggests that MHD turbulence can, to a large extent, describe
the magnetic discontinuities observed in the solar wind. This
supports a picture in which the discontinuities are associated
with intermittent structures that arise from the MHD energy
cascade (Sorriso-Valvo et al. 2007; MacBride et al. 2008). This
can be alternative or complementary to the coronal flux tube
model of discontinuities.

What remains to be better understood is the difference in
scaling of Δx and Δt required to obtain agreement between
the pdf’s for the two cases. This result is surprising, and we
cannot provide an exhaustive explanation with our current level
of understanding and numerical simulations. Our results may
suggest that the different scaling in MHD simulations arises
due to a very limited inertial range relative to the solar wind.
The fact that P (Δθ ) are in such good agreement despite these
differences suggests that there could be an underlying universal
description for them.
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